
Go straight, Turn Right: Pose Graph Reduction through Trajectory
Segmentation using Line Segments

Yasir Latif and José Neira

Abstract— With better hardware and more efficient graph-
SLAM solvers, we are able to solve increasingly large mapping
problems. An actual implementation of a mapping problem as
a pose graph requires a certain amount of discretization of the
information coming from odometry. Such discritizations are
either sensor dependent or use a minimum distance travelled
heuristic to add poses to the graph. In this work, we explore
the question: how much information we can discard and
still be able to get a correct map estimate using the pose
graph formulation. We approximate the robot trajectory by
a sequence of lines leading to a reduced representation of the
original pose graph. This reduction is carried out by using an
incremental algorithm that adds new poses to the reduced graph
when the perpendicular distance for the current estimated line
exceeds a threshold. The reduced representation allows us to
recover a part of (or the full) graph when needed. This is
achieved by exposing the reduced graph to the optimizer but
at the same time not discarding the original pose graph. We
show the application of our proposed method on real world
datasets and illustrate the accuracy and efficiency with which
a reduced representation can approximate the original pose
graph problem.

I. INTRODUCTION

Recently, the graph based formulation to solve the SLAM
problem has become a common choice. Even though this
representation was proposed a long time ago [1], it has
made a comeback thanks to advances which allow efficient
solutions for the non-linear optimization problem. Most of
the current optimization back-ends take advantage of the
sparse nature of the SLAM problem, for instance iSAM [2],
HOG-Man [3], and g2o [4].

Graph-SLAM is traditionally divided into two separate
parts: (a) the front-end which extracts constraints from the
sensor input and adds them to the pose graph as edges, and
(b) the back-end which is responsible for calculating the most
likely configuration of the nodes, given these constraints. The
front-end, based on the sensory input, has to decide when to
add new constraints to the pose graph. Traditionally it is
done after a certain amount of time has elapsed, such as for
a laser scanner working at a fixed frequency, or when there
is significant change in the robot pose or environment, as is
the case in key-frame based approaches [5], [6].

As the robot explores the environment, the pose graph
representing the SLAM problem grows with the exploration
time. The number of links in the graph, as well as the graph

Yasir Latif and José Neira are with the Instituto de Investigación en
Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Zaragoza 50018,
Spain. {ylatif, jneira}@unizar.es.

This research has been funded by the Dirección General de Investigación
of Spain under projects DPI2009-13710 and DPI2012-36070 and by DGA-
FSE(group T04).

−
5
0

0
5
0

1
0
0

−
8
0

−
6
0

−
4
0

−
2
00

2
0

4
0

6
0

8
0

1
0
0

Fig. 1. Odometry from the Bicocca dataset segmented with a threshold
of 0.05m. Alternating colours represent different segments. The reduced
representation contains 1127 nodes compared to the original 8358 nodes.

structure, determines the computational complexity of the
optimization process. In recent literature, various methods
have been proposed to deal with the increasing number of
nodes in the graph. Grisetti et al. [3] represent the pose
graph at different levels in a hierarchy, where the lowest level
represents the full pose graph and successive higher levels
represent sampled versions of the lower levels. Updated are
propagated between different levels when needed. Ila et al.
[7] use an information theoretic method for selecting the
constraints that should be added to the pose graph. Loop
closures are added by assessing the possible information
gain. This provides a sampled version of the pose graph but
the graph still grows with exploration time.

More recently, approaches have been proposed that allow
the pose graph to grow with the area explored as opposed
to the exploration time. Kretzschmar et al. [8] presented an
information theoretic pruning for laser-based maps. The main
idea is to consider the mapped area as a grid-map and prune
laser scans based on an information gain measure. For Visual
SLAM, Johannsson et al. [9] showed an approach that scales
with the explored area by adding constraints during revisits
to the existing pose graph rather than adding new vertices
in the graph. They show results for a large stereo sequence
map spanning a time of nine hours. Walcott-Bryant et al.
[10] presented a mapping solution namely DG-SLAM for
low dynamic environments in which out-dated information is
pruned based on new observation, thus maintaining a reduced
map that changes with time.

Some approaches approximate the marginal covariance in

Algorithm 1 Incremental Line Estimator
Input: poses(xstart : xk), start , end , k , threshold , segmentList
Output: start ,end , segmentList

if poses.size() == 2 then
start ← x0

end ← x1

else
L = line(xstart, xend)
i = argmaxp distance(xp, L)

∧
p ∈ (start, k)

if distance(xi, L) > threshold then
segmentList← segmentList ∪ segment(start, i)
start← i + 1
end← k

else
end← k

end if
end if

order to identify which nodes to eliminate. In this con-
text Kretzschmar et al. [11] presented a Chow-Liu tree
based approximation for the marginal covariance. Similarly,
Carlevaris-Bianco and Eustice [12] show a method for
marginalization over cliques of nodes which can later be
sparsified using a Chow-Liu tree approximation.

In this work, we take a very simple approach to the
problem of a reduced pose graph representation. We reduce
the pose graph taking into account the underlying trajectory
of the robot. We employ an incremental variant of the well-
know split and merge algorithm [13] for this estimation, that
only utilizes the “split” part of the algorithm as the trajectory
is incrementally approximated by lines segments therefore
line segments are only split but never merged. The main
idea is to keep the computational overhead small by reducing
the number of poses that represent the mapping problem. In
addition, we want to be able to recover the full pose graph
once we have optimized a reduced version of it. Moreover,
we are interested in finding out how such a simple approach
effects the final estimate in terms of accuracy and the time
needed to compute the optimal pose estimates.

In the next section we summarize the formulation of the
SLAM problem as a pose graph. In section III we provide
the detail of our method. Experiments are detailed in section
IV along with in-depth evaluations of the effect of reduction
on different aspect of the graph-SLAM problem. Finally, in
section V further discussion and conclusions about this work
are presented.

II. THE POSE GRAPH FORMULATION

The graph based formulation for SLAM, the so-called
“graph-SLAM”, models robot poses as state variables in
the graph’s nodes and constraints as factors on the graph’s
edges. The factors represent a distance to minimize between
the poses and the observations given by the sensors. In the
Gaussian assumption case, sensor noise is modelled using the
covariance or the information matrix. Let x = (x1 . . . xn)T

be a vector of parameters that describes the configuration of
the nodes. Let tij and Ωij be the mean and the information
matrix of the observation of node j from node i. Given the

Algorithm 2 Compose
Input: poses(xi : xj), i , j
Output: tij ,Σij

k ← i + 1
while k < j − 1 do

tik ← ti,k−1 ⊕ tk,k+1

Σik ← J1Σi,k−1J
T
1 + J2Σk,k+1J

T
2

k ← k + 1
end while

state x, let the function fij(x) be a function that calculates
the perfect observation according to the current state. The
residual rij can then be calculated as:

rij(x) = tij − fij(x) (1)

Constraints can either be introduced by odometry which are
sequential constraints (j = i+ 1), or from place recognition
system which are non-sequential. The amount of error intro-
duced by each constraint, weighed by its information, can
be calculated as:

dij(x)2 = rij(x)T Ωijrij(x) (2)

and therefore the overall error, assuming all the constraints
to be independent, is given by:

D2(x) =
∑

dij(x)2 =
∑

rij(x)T Ωijrij(x) (3)

where dij(x)2 is the pairwise factor of the present variables
in nodes i and j. The solution to graph-SLAM problem is
to find a state x∗ that minimizes the overall error.

x∗ = argmin
x

∑
rij(x)T Ωijrij(x) (4)

III. METHOD

In the proposed method, we exploit the fact that robots
and vehicles tend to move along straight lines. Moving along
a straight line signifies that the robot’s translation parame-
ters change but the orientation parameter varies slightly or
remains the same. The SLAM problem is non-linear due
to the angular component of each constraint. If the robot
travels in a nearly straight line, due to the small angle
approximation, the constraints contribute linearly towards the
solution. We can therefore replace all such constraints with
a single constraint, in effect reducing the number of poses
representing the mapping problem.

Given a pose graph, we can efficiently estimate a line
based approximation for the robot’s trajectory. Line approx-
imations have been used previously for fitting line segments
to 2D range scans [13]. As with any approximation method,
the user has to decide what threshold to set. In our case,
this threshold represents the maximum point-line distance
after which the point is considered to not belong to the line.
In other words, all the points should have a distance lower
than this threshold from the line-segments by which they are
approximated.

The process of line-fitting is given in Algorithm 1. Given
a new pose (k), we have to decide if it agrees with the line-
segment being estimated (which is represented by the start
and end vertex labels) or should the line be split into two
segments. This is done by calculating the distances from the
current line to all the points between the start and the current
node (k), and finding the node (i) which lies the farthest away
from this line. If this distance is greater than the specified
threshold, the line is terminated at node (i) and the new line
starts at the node next to it (i+1), with the current node (k) as
its end point. When the line terminates, the poses from start
to end are the nodes in the graph that lie along a straight
line. These labels are the end-points of the line segment. The
reduced graph contains only the corresponding two nodes per
segment and the computed transformation.

This algorithm assumes that the nodes are labelled along
time such that the first node to arrive in the graph has a label
zero and each new node introduced increases this label by
one.

The pose graph until now is assumed to consist of just
sequential constraints. An example output of the algorithm is
shown in Fig. 1 where each new segment is represented with
an alternating colour. The threshold used for this example is
0.05 meters.

We now address how loop closures can be incorporated
in the reduced pose graph. Loop closures provide non-
sequential constraints on the graph that help reduce the
overall uncertainty and allow for a better map estimate. In
this work, we assume that all the loop closures present in the
graph are correct and we do not address the issue of incorrect
loop closure that may arise due to perceptual aliasing (see
Section V for discussion). The method described in this work
keeps all the loop closing edges that are present in the graph.
The information provided by loop closure is too valuable to
be discarded.

We assume that the non-sequential edges encode loop clo-
sures and have a consistent sense of direction i.e loop closure
are given by measurements between two non-consecutive
nodes xk and xl where k > l. For each of the poses xk

and xl not already present in the reduced graph, the segment
to which the node belongs are retrieved. The corresponding
segment which starts at node xi and ends at xj must satisfy
i < l < j. The segment can now be split at xl in to two
segments (xi, xl) and (xl, xj). The constraints introduced
by the front end are added to the reduced-graph without any
modification. Incorporating loop closures information in the
reduced pose graph is only possible if we do not discard
the actual information that was introduced by the front end,
which is precisely what our method does. We do not throw
anything away, but instead expose a selected subset of the
complete information to the back-end optimizer. This reduces
both the number of vertices and the number of edges in the
graph being optimized while allowing us to “on-demand”
recreate the complete graph when needed, as explained later.

The output of the above process is a sorted list of vertices
that belong to the reduced graph and are contained in the
segmentList. The members of segmentList are of the

form [(0, k), (k + 1, j), (j, l), (l,m), (m + 1, . . .]. Disjoint
segments are the segments that arise from sequential con-
straint, such as the first two in the list. They are disjoint
because they have no nodes in common. Segments that
are created due to loop-closings have overlapping end-
points (such as the second and third pair in the previous
list). We keep segments arising for sequential constraints
disjoint in order incorporate one extra constraint (in this
case tk,k+1), allowing the two lines to “move” with respect
to each other. Each element in this list is then passed onto
Algorithm 2 which composes the corresponding constraints
from the original graph for each segment and introduces this
new constraint into the reduced graph using a first order
approximation as explained below:

Given two constraints tij and tjk with associated covari-
ances Σij and Σjk, the first order approximation of the
resulting constraints tik is given by

tik = tij ⊕ tjk

and the corresponding covariance matrix Σik by

Σik ' J1ΣijJ
T
1 + J2ΣjkJ

T
2

where J1 and J2 are Jacobian of the composition function
w.r.t tij and tjk respectively.

Algorithm 2. calculates a chain of such transformation

tij = ti,i+1 ⊕ ti,i+1 ⊕ . . .⊕ tj−1,j

along with the corresponding covariance matrix and adds the
resulting constraint to the reduced pose graph.

Additionally, constrains between the end and start of
consecutive segments (k and k + 1 in the previous example)
are also added to the reduced graph, along with all the loop-
closing constraints.

IV. EXPERIMENTS

In order to evaluate our method, we work with real
datasets. The experiments shown here use the Bicocca dataset
and the Bicocca Multi-session dataset from the RAWSEEDS
project [14] as well as the New College dataset [15]. The
experiments investigate how trajectory segmentation effects
the translation error, uncertainty estimates, optimization time,
and the number of vertices in the graph. All the experiments
provide results with the full-graph as the reference.

The Bicocca and Bicocca-multisession datasets consist of
laser odometry working at 5 Hz. Odometry constraints are
calculated using simple scan-matching. The loop closing
constraints comes for a Bag-of-words (BoW) system [16].
For the New College dataset, the odometry comes from
stereo visual odometry and loop closures from the same
BoW system. Loop closure verification for each dataset has
been carried out using RRR [17], ensuring that all the loops
present in the datasets are correct.

Fig. 2. Left to right: Maps built with the threshold set to 5cm, 10cm and 50cm respectively. Area marked in the first figure is shown zoomed in for each
corresponding figure. Optimized complete graph is shown in red and reduced in green. (Best viewed online in color and zoomable)

Bicocca New College Bicocca-multisession

Threshold Vertices Time Error(mean/med/max) Vertices Time Error(mean/med/max) Vertices Time Error(mean/med/max)

None 8358 0.429 - 10726 0.607 - 43116 2.3507 -

0.05m 1127 0.055 0.022/0.029/0.140 2389 0.141 0.013/0.005/1.716 8762 0.495 0.038/0.037/0.122

0.10m 864 0.049 0.040/0.051/0.227 1969 0.107 0.007/0.005/1.714 5308 0.299 0.124/0.100/0.640

0.50m 509 0.028 0.661/0.750/1.350 1357 0.080 0.332/0.087/1.467 2712 0.165 0.487/0.423/1.646

TABLE I
RESULTS FOR DIFFERENT THRESHOLD VALUES: TIME IN SECONDS AND ERROR IN METERS.

Effect on Error and timing

In order to investigate the effect of a given threshold on
the error in optimized pose positions, we run the experiments
with the mentioned datasets using three different thresholds,
0.05m, 0.10m and 0.50m. For all the cases, the time reported
is for 10 Gauss-Newton iterations as given by g2o [4]. Error
is calculated as the euclidean distance between the position
of the node in the full-graph against the same node in the
reduced graph. The results are given in Table I.

It can be seen that in every case, even a small threshold
leads to a great reduction in the number of nodes needed
to represent the graph. In case of Bicocca, we get an 86%
reduction in the number of vertices and almost ten times
speed up. Similarly a 77% and 79% reduction in the new
college and Bicocca Multi-session dataset respectively.

The final estimated poses of the reduced graph and the full
graph are very close to each other. For a trajectory length of
774m for Bicocca, the median error is about 3cm, and for
New college with a trajectory length of 2.2km, the median
error is about 0.5cm accompanied by a great reduction in
the number of nodes.

As expected, increasing the threshold leads to fewer ver-
tices remaining in the graph, but at the same time more error
is introduced.

Fig. 2 shows the corresponding optimized reduced graphs.
The difference between the full-graph (red) and reduced
graph (red) is difficult to see in the original plots but is visible
in the accompanying zoomed sections. Moving from left to
right, more of the reduced graph becomes visible, meaning
that it is starting to deviate from the estimate that is given

Ratio Count

Threshold min/mean/median/max ≤ 1 > 1

0.05m 0.96/1.00/1.00/1.07 642 483

0.10m 0.70/1.00/1.00/3.09 343 519

0.50m 0.52/0.99/0.99/2.10 343 164

TABLE II
EFFECT OF THRESHOLD: ESTIMATED UNCERTAINTY FOR BICOCCA

DATASET.

by the full-graph.

Effect on Uncertainty estimates

We want to investigate how reducing the graph with differ-
ent thresholds affects the estimates of marginal covariances
of the nodes in the full-graph as compared to the nodes in
the reduced-graph. We characterise the uncertainty of each
marginal covariance matrix by its determinant. The determi-
nant captures the overall uncertainty and is proportional to
the total volume of the uncertainty ellipsoid. We compare the
ratio of the determinant of the marginal covariance matrices
of the corresponding nodes in the full-graph and reduced
graph at different thresholds. The results for Bicocca dataset
are show in Table II.

If the value of the ratio is less than one, it means that the
reduced-graph over-estimates the uncertainty. On the other
hand, a value greater than one suggests that the estimate
might be over-confident. We prefer an estimate that is not
over-confident. An under-confident (having more uncertainty
than actual) is a more plausible, though less precise, solution.

In the results shown in Table. II, on average the uncertainty
estimates are around or below 1. Even though the estimate
for some nodes are over-confident, the amount by which they
are away from the true value is small. This means that while
reducing the nodes in this fashion leads to some estimates
possibly becoming over-confident, the map is still usable.
The distribution of these ratios can be seen in Fig. 3, which
shows the majority of values tightly packed near 1 and very
few above 1.

V. DISCUSSION

In this paper, we have presented a method for reducing
pose graphs based on approximating the underlying trajec-
tory using lines. Such approximation are used in a larger
context by utilizing some property of the sensor such as
range to ensure a minimum overlap or by using the distance
travelled by the robot, all of which are done at the front-
end of a SLAM system. The back-end does not need all the
information to calculate a correct map estimate. With non-
linear solver becoming more efficient, we are able to solve
increasingly larger problems quickly, but the question still
needs to be asked: How much information needs to go into
the graph to get a good estimate of all the poses?

This question is important in the context of resource lim-
ited devices such as cell phones or development boards such
as the raspberry pi. Such platforms have limited computation
power and limited memory. Enabling such devices to perform

0.5 1 1.5 2
0

50

100

150

200

250

300

det(full graph) / det(reduced graph)

c
o

u
n

t

Fig. 3. Effect of reduction on the uncertainty estimates: Distribution of
the ratio of determinants of marginal covariance for corresponding nodes
in full graph and reduced-graph for Bicocca dataset at a threshold of 0.05
meters.

on par with their high-end counterparts requires looking
deeper into the problem and finding approximations that can
work reasonably well on them.

In this work we have shown a line based approximation
method that drastically reduces the number of poses in the
pose graph, enabling an order of a magnitude speed up with
very little difference in terms of accuracy compared to the
original problem. The method presented here works on the
SLAM back-end and is therefore sensor agnostic. Similarly,
techniques that do not require every pose in the graph, such
as methods that reason about the validity of loop-closures
[17]–[19], can greatly benefit from the presented approach.

As mentioned earlier, our method calculates a reduced
version of the original pose graph, which is then optimized.
We keep the original graph consisting of all the vertices and
edges in the memory. This allows us to do an “on-demand”
retrieval of the full-graph when it is needed for tasks such
as navigation or reconstruction of the environment based on
sensor data.

Given that all constraints in the graph are relative, once
we optimize the reduced graph, constraints from the original-
graph can be reintroduced and a full map estimate can be
calculated. While we have shown this work as it applies to
the problem of the optimization, it can be used as such to
solve the problem of finding a good initial estimate for the
complete graph. The advantage of using the reduced graph to
calculate the optimal state arises from the fact that initially
the graph may be far from the optimal state and suffer from
slow convergence, which is made worse by the huge size
of the problem. Solving a reduced problem leads to faster
converge, as well as a better linearisation point when all
(or a part of) the constraints are reintroduced. This leads to
convergence in a very small number of iterations.

The method as presented here is suitable for non-
holonomic robots, e.g. robots that can not rotate in-place. For
holonomic robots, further constraints have to been introduced
during the line estimation process for the special case of in-

place rotation.
While we are representing the original problem with a

reduced, approximated version, the number of nodes in the
graph still grows with time. It is not desirable for long-term
operation where the robot is expected to move around in the
environment for a potentially infinite duration. Future work
would include extending the current approach to take into
account revisit information that is provided by loop-closures
and finding a method that can fuse revisited segments of the
map, giving a pose graph that grows with the area explored
as opposed to growing with exploration time.

REFERENCES

[1] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, pp. 333–349,
1997.

[2] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering,” in IEEE Intl.
Conf. on Robotics and Automation, ICRA, Shanghai, China, May 2011.

[3] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2d and 3d map-
ping,” in Robotics and Automation (ICRA), 2010 IEEE International
Conference on, may 2010, pp. 273 –278.

[4] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[5] G. Klein and D. Murray, “Parallel tracking and mapping for small
ar workspaces,” in Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, ser.
ISMAR ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 1–10. [Online]. Available: http://dx.doi.org/10.1109/ISMAR.2007.
4538852

[6] ——, “Improving the agility of keyframe-based SLAM,” in Proc.
10th European Conference on Computer Vision (ECCV’08), Marseille,
October 2008, pp. 802–815.

[7] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
pose slam,” Robotics, IEEE Transactions on, vol. 26, no. 1, pp. 78–93,
2010.

[8] H. Kretzschmar, C. Stachniss, and G. Grisetti, “Efficient information-
theoretic graph pruning for graph-based slam with laser range finders,”
in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Interna-
tional Conference on, sept. 2011, pp. 865 –871.

[9] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in RSS Workshop
on Long-term Operation of Autonomous Robotic Systems in Changing
Environments, Sydney, Australia, Jul 2012.

[10] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic Pose Graph SLAM: Long-term Mapping in Low Dynamic
Environments,” in Proc. IEEE/RJS Int. Conference on Intelligent
Robots and Systems, 2012.

[11] H. Kretzschmar and C. Stachniss, “Information-theoretic compression
of pose graphs for laser-based slam,” The International Journal of
Robotics Research, vol. 31, no. 11, pp. 1219–1230, 2012.

[12] N. Carlevaris-Bianco and R. M. Eustice, “ Generic factor-based node
marginalization and edge sparsification for pose-graph SLAM ,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, May 2013.

[13] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A comparison
of line extraction algorithms using 2D laser rangefinder for indoor
mobile robotics,” in Intelligent Robots and Systems, 2005.(IROS 2005).
2005 IEEE/RSJ International Conference on. IEEE, 2005, pp. 1929–
1934.

[14] RAWSEEDS, “Robotics advancement through Webpublishing of sen-
sorial and elaborated extensive data sets (project FP6-IST-045144),”
2009, http://www.rawseeds.org/rs/datasets.

[15] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The
new college vision and laser data set,” The International Journal of
Robotics Research, vol. 28, no. 5, pp. 595–599, May 2009. [Online].
Available: http://www.robots.ox.ac.uk/NewCollegeData/

[16] C. Cadena, D. Gálvez-López, J. Tardós, and J. Neira, “Robust place
recognition with stereo sequences,” IEEE Transaction on RObotics,
vol. 28, no. 4, pp. 871 –885, 2012.

[17] Y. Latif, C. Cadena, and J. Neira, “Robust Loop Closing Over Time,”
in Proceedings of Robotics: Science and Systems, Sydney, Australia,
July 2012.

[18] N. Sünderhauf and P. Protzel, “Switchable Constraints for Robust
Pose Graph SLAM,” in Proc. IEEE/RJS Int. Conference on Intelligent
Robots and Systems, Vilamoura, Portugal, 2012.

[19] E. Olson and P. Agarwal, “Inference on networks of mixtures for
robust robot mapping,” in Proceedings of Robotics: Science and
Systems, Sydney, Australia, July 2012.

